503 research outputs found

    Name Transmission Relationships in England (1838-2014)

    Get PDF
    Baby names are often used to model the mechanisms of cultural evolution, as they are not given arbitrarily but on the basis of their perceived associations. Datasets showing birth registrations over time track changes in these perceptions, and thereby in tastes and ideas. Using birth registration data, numerous transmission biases have been identified that predispose someone to favour one cultural variant (i.e., a name) over another. While this research is facilitated by the annual release of many countries’ birth registration data, these datasets are typically limited to yearly counts of forenames. To gain insight into name transmission biases not detectable from birth registration data alone, this study parses the birth, marriage, and death registers of England to generate a dataset of 690,603 name transmission relationships, given between 1838 and 2014, and linking the names of both parents and child. The data reveal long-term trends in matro- and patronymic naming, once common practices affecting approximately 15% of male and 8% of female records per year throughout the 19th century. These practices declined precipitously throughout the 20th century, in the aftermath of the First World War. These results highlight the importance of contextualising birth registration data when identifying naming trends

    History and Utility of Single Port Laparoscopy, Robotic Assisted Laparoscopy, and Vaginal Laparoscopy (vNOTES) in Gynecologic Surgery

    Get PDF
    Minimally invasive gynecologic surgery is a rapidly growing field, with new modalities and methods being explored constantly. Since the inception of laparoscopic surgery, the goal has been to minimize incision size, which has been further extrapolated to focus on less incisions with Laparoendoscopic Single-site Surgery (LESS). Single site surgery has several advantages, disadvantages, and historically relevant utility. Throughout the ensuing text, the nuances of LESS will be explored and described in detail. Our purpose in this chapter is to explore the history and utility of single site surgery. We hope to set the stage for the extensive coverage and contents of the text to elaborate on LESS and its use in modern Gynecology

    Utility of Robotic Assisted and Single Site Laparoscopy to Gynecologic Oncology

    Get PDF
    Single site laparoscopy, while in its infancy, is being explored for potential areas of application within the realm of gynecology. Gynecologic Oncology is a field with high potential benefit from the single site technique. It boasts many practical and theoretical surgical improvements, such as facilitated specimen removal, which are elaborated further in this chapter. While much more research is needed, there are exciting and uniquely useful utilities of Laparo-endoscopic Single-site Surgery (LESS) in gynecology oncology

    Low carbon infrastructure investment: extending business models for sustainability

    Get PDF
    Investment in infrastructure is recognized as a key enabler of economic prosperity, but it is also important for addressing social and environmental challenges, including climate change mitigation and addressing fuel poverty. The UK Government Strategy Investing in Britain’s Future argues that significant investment in “resilient, cost effective and sustainable energy supplies” is needed to meet these challenges. However, current methods of assessing the costs and benefits of infrastructure investment, and the subsequent design of business models needed to deliver this investment, often prioritise partial economic gains over social and environmental objectives. This paper extends the business model canvas approach to allow designing business models and evaluation methods that can incorporate social and environmental value streams and propositions as well as economic values in order to facilitate genuinely sustainable infrastructure investment. It demonstrates the usefulness of this extension through two case studies of the development of smart grids for electricity distribution and local heat delivery networks in the UK. Smart grids are essential for maintaining the security and reliability of electricity systems whilst incorporating increasing amounts of low carbon generation in distribution networks. District heat networks can facilitate the efficient supply of low carbon heat. However, both will require significant levels of investment, co-ordination between public, private and regulatory actors, and will deliver a range of economic, social and environmental costs and benefits to these actors. Drawing on empirical interviews with local actors involved in smart grid and heat network developments, and recent work on valuation and business model canvas analysis, the paper challenges the traditional view of a business model as only creating one form of value. Accounting for multiple types of value helps to identify business models that are more likely to achieve the environmental and social goals of infrastructure transformation and opens the door for new actors. Finally, the paper introduces an approach to complex systems modelling of infrastructure investment decisions to take into account the range of actors and the diversity of motivations of these actors

    Evaluation of methods for detecting human reads in microbial sequencing datasets

    Get PDF
    Sequencing data from host-associated microbes can often be contaminated by the body of the investigator or research subject. Human DNA is typically removed from microbial reads either by subtractive alignment (dropping all reads that map to the human genome) or by using a read classification tool to predict those of human origin, and then discarding them. To inform best practice guidelines, we benchmarked eight alignment-based and two classification-based methods of human read detection using simulated data from 10 clinically prevalent bacteria and three viruses, into which contaminating human reads had been added. While the majority of methods successfully detected >99 % of the human reads, they were distinguishable by variance. The most precise methods, with negligible variance, were Bowtie2 and SNAP, both of which misidentified few, if any, bacterial reads (and no viral reads) as human. While correctly detecting a similar number of human reads, methods based on taxonomic classification, such as Kraken2 and Centrifuge, could misclassify bacterial reads as human, although the extent of this was species-specific. Among the most sensitive methods of human read detection was BWA, although this also made the greatest number of false positive classifications. Across all methods, the set of human reads not identified as such, although often representing 300 bp) bacterial reads, the highest performing approaches were classification-based, using Kraken2 or Centrifuge. For shorter (c. 150 bp) bacterial reads, combining multiple methods of human read detection maximized the recovery of human reads from contaminated short read datasets without being compromised by false positives. A particularly high-performance approach with shorter bacterial reads was a two-stage classification using Bowtie2 followed by SNAP. Using this approach, we re-examined 11 577 publicly archived bacterial read sets for hitherto undetected human contamination. We were able to extract a sufficient number of reads to call known human SNPs, including those with clinical significance, in 6 % of the samples. These results show that phenotypically distinct human sequence is detectable in publicly archived microbial read datasets

    Network analysis of the social and demographic influences on name choice within the UK (1838-2016)

    Get PDF
    <div><p>Chosen names reflect changes in societal values, personal tastes and cultural diversity. Vogues in name usage can be easily shown on a case by case basis, by plotting the rise and fall in their popularity over time. However, individual name choices are not made in isolation and trends in naming are better understood as group-level phenomena. Here we use network analysis to examine onomastic (name) datasets in order to explore the influences on name choices within the UK over the last 170 years. Using a large representative sample of approximately 22 million forenames from England and Wales given between 1838 and 2014, along with a complete population sample of births registered between 1996 and 2016, we demonstrate how trends in name usage can be visualised as network graphs. By exploring the structure of these graphs various patterns of name use become apparent, a consequence of external social forces, such as migration, operating in concert with internal mechanisms of change. In general, we show that the topology of network graphs can reveal naming vogues, and that naming vogues in part reflect social and demographic changes. Many name choices are consistent with a self-correcting feedback loop, whereby rarer names become common because there are virtues perceived in their rarity, yet with these perceived virtues lost upon increasing commonality. Towards the present day, we can speculate that the comparatively greater range of media, freedom of movement, and ability to maintain globally-distributed social networks increases the number of possible names, but also ensures they may more quickly be perceived as commonplace. Consequently, contemporary naming vogues are relatively short-lived with many name choices appearing a balance struck between recognisability and rarity. The data are available in multiple forms including via an easy-to-use web interface at <a href="http://demos.flourish.studio/namehistory" target="_blank">http://demos.flourish.studio/namehistory</a>.</p></div

    Environmental controls on the distribution and diversity of lentic Chironomidae (Insecta: Diptera) across an altitudinal gradient in tropical South America

    Get PDF
    To predict the response of aquatic ecosystems to future global climate change, data on the ecology and distribution of keystone groups in freshwater ecosystems are needed. In contrast to mid- and high-latitude zones, such data are scarce across tropical South America (Neotropics). We present the distribution and diversity of chironomid species using surface sediments of 59 lakes from the Andes to the Amazon (0.1–17°S and 64–78°W) within the Neotropics. We assess the spatial variation in community assemblages and identify the key variables influencing the distributional patterns. The relationships between environmental variables (pH, conductivity, depth, and sediment organic content), climatic data, and chironomid assemblages were assessed using multivariate statistics (detrended correspondence analysis and canonical correspondence analysis). Climatic parameters (temperature and precipitation) were most significant in describing the variance in chironomid assemblages. Temperature and precipitation are both predicted to change under future climate change scenarios in the tropical Andes. Our findings suggest taxa of Orthocladiinae, which show a preference to cold high-elevation oligotrophic lakes, will likely see range contraction under future anthropogenic-induced climate change. Taxa abundant in areas of high precipitation, such as Micropsectra and Phaenopsectra, will likely become restricted to the inner tropical Andes, as the outer tropical Andes become drier. The sensitivity of chironomids to climate parameters makes them important bio-indicators of regional climate change in the Neotropics. Furthermore, the distribution of chironomid taxa presented here is a vital first step toward providing urgently needed autecological data for interpreting fossil chironomid records of past ecological and climate change from the tropical Andes

    Early frontotemporal dementia targets neurons unique to apes and humans

    Get PDF
    Objective: Frontotemporal dementia (FTD) is a neurodegenerative disease that erodes uniquely human aspects of social behavior and emotion. The illness features a characteristic pattern of early injury to anterior cingulate and frontoinsular cortex. These regions, though often considered ancient in phylogeny, are the exclusive homes to the von Economo neuron (VEN), a large bipolar projection neuron found only in great apes and humans. Despite progress toward understanding the genetic and molecular bases of FTD, no class of selectively vulnerable neurons has been identified. Methods: Using unbiased stereology, we quantified anterior cingulate VENs and neighboring Layer 5 neurons in FTD (n = 7), Alzheimer's disease (n = 5), and age‐matched nonneurological control subjects (n = 7). Neuronal morphology and immunohistochemical staining patterns provided further information about VEN susceptibility. Results: FTD was associated with early, severe, and selective VEN losses, including a 74% reduction in VENs per section compared with control subjects. VEN dropout was not attributable to general neuronal loss and was seen across FTD pathological subtypes. Surviving VENs were often dysmorphic, with pathological tau protein accumulation in Pick's disease. In contrast, patients with Alzheimer's disease showed normal VEN counts and morphology despite extensive local neurofibrillary pathology. Interpretation: VEN loss links FTD to its signature regional pattern. The findings suggest a new framework for understanding how evolution may have rendered the human brain vulnerable to specific forms of degenerative illness

    Turnover of variant surface glycoprotein in Trypanosoma brucei is a bimodal process

    Get PDF
    This work was supported by United States Public Health Service grant R01 AI035739 and funds from the Jacobs School of Medicine and Biomedical Sciences to J.D.B. and from United States Public Health Service grant 1S10OD021719-01A1 to the University of Georgia, which purchased the ImageStreamX Mk II. This work was also supported by the Wellcome Trust (grant 094476/Z/10/Z) for funding the purchase of the TripleTOF 5600 mass spectrometer at the BSRC Mass Spectrometry and Proteomics Facility.African trypanosomes utilize glycosylphosphatidylinositol (GPI)-anchored variant surface glycoprotein (VSG) to evade the host immune system. VSG turnover is thought to be mediated via cleavage of the GPI anchor by endogenous GPI-specific phospholipase C (GPI-PLC). However, GPI-PLC is topologically sequestered from VSG substrates in intact cells. Recently, A. J. Szempruch, S. E. Sykes, R. Kieft, L. Dennison, et al. (Cell 164:246-257, 2016, https://doi.org/10.1016/j.cell.2015.11.051) demonstrated the release of nanotubes that septate to form free VSG+ extracellular vesicles (EVs). Here, we evaluated the relative contributions of GPI hydrolysis and EV formation to VSG turnover in wild-type (WT) and GPI-PLC null cells. The turnover rate of VSG was consistent with prior measurements (half-life [t1/2] of ∼26 h) but dropped significantly in the absence of GPI-PLC (t1/2 of ∼36 h). Ectopic complementation restored normal turnover rates, confirming the role of GPI-PLC in turnover. However, physical characterization of shed VSG in WT cells indicated that at least 50% is released directly from cell membranes with intact GPI anchors. Shedding of EVs plays an insignificant role in total VSG turnover in both WT and null cells. In additional studies, GPI-PLC was found to have no role in biosynthetic and endocytic trafficking to the lysosome but did influence the rate of receptor-mediated endocytosis. These results indicate that VSG turnover is a bimodal process involving both direct shedding and GPI hydrolysis. IMPORTANCE African trypanosomes, the protozoan agent of human African trypanosomaisis, avoid the host immune system by switching expression of the variant surface glycoprotein (VSG). VSG is a long-lived protein that has long been thought to be turned over by hydrolysis of its glycolipid membrane anchor. Recent work demonstrating the shedding of VSG-containing extracellular vesicles has led us to reinvestigate the mode of VSG turnover. We found that VSG is shed in part by glycolipid hydrolysis but also in approximately equal part by direct shedding of protein with intact lipid anchors. Shedding of exocytic vesicles made a very minor contribution to overall VSG turnover. These results indicate that VSG turnover is a bimodal process and significantly alter our understanding of the "life cycle" of this critical virulence factor.Publisher PDFPeer reviewe
    corecore